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Dynamic scaling near the percolation threshold in the 
diluted Heisenberg chain 

R B Stinchcombe and C K Harris+ 
Theoretical Physics Department, 1 Keble Road, Oxford, OX1 3NP, UK 

Received 9 May 1983 

Abstract. Critical spin wave dynamics in the dilute Heisenberg chain near the percolation 
threshold is treated by two complementary approaches. The first exploits the renormalisa- 
tion group transformation of parameters under a length scaling achieved by decimation 
on the equations of motion of the random system; the second obtains from the contributions 
from chain segments of all possible sizes the average dynamic response using a continuum 
approach valid for small wavevector k and long percolation correlation length &,. Both 
approaches yield identical dynamic scaling forms for the dynamic response, with dynamic 
exponent z = 2, and details of the crossover of characteristic frequency between hydro- 
dynamic and critical forms as k t p  varies from 0 to oi). A detailed expression for the scaling 
function for the dynamic response is also obtained. 

1. Introduction 

In this paper we investigate the dynamic critical behaviour of the transverse linear 
response function for a one-dimensional diluted Heisenberg ferromagnet at zero 
temperature. In such diluted systems (Korenblit and Shender 1978, Kirkpatrick 1979, 
Stinchcombe 1983a) the dynamics becomes critical near the percolation threshold 
where the percolation correlation length tp diverges (Essam 1980), and crossover 
can occur between dynamic behaviours characteristic of wavelengths large or small 
compared with tp. 

The critical dynamic response function is calculated both approximately, using a 
new dynamic real space renormalisation group (RSRG) technique, and analytically by 
directly evaluating the dynamic response from clusters of arbitrary size and applying 
the proper cluster weights. 

The RSRG technique exploits the change of parameters (concentration, characteris- 
tic frequency, and Green function) occurring under a length scaling of the dilute chain. 
The transformation is obtained by writing the equation of motion for arbitrary 
configurations of the random chain and decimating the spin variables for every other 
site. An account of some aspects of this method has been previously given in 
Stinchcombe (1983b) and Harris and Stinchcombe (1983). Early versions not dealing 
fully with arbitrary configurations were developed by Marland and Stinchcombe (see 
Marland 1977) and Goncalves da Silva and Koiller (1981). 

The analytic method depends on considering the dynamics of spins on the isolated 
pure segments into which the chain separates on dilution, and obtaining the average 
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response by superposing the contributions of segments of different lengths with the 
appropriate probabilities. In the dynamic critical regime a continuum description is 
possible because both wavelength and tP are large compared with the lattice spacing. 
This second method has previously been applied to the Glauber dynamics of diluted 
Ising chains (Harris 1983), where it yields results including those obtained using a 
different method by Dhar and Barma (1980). 

The predictions of the two methods are in complete agreement. The principal 
result of the paper is that the response function obeys dynamic scaling with a dynamic 
exponent of 2, but the crossover of characteristic frequency, and a detailed expression 
for the scaling function of the dynamic response, are also obtained. 

The layout of the paper is as follows. The remainder of the present section is 
spent defining relevant quantities and setting up the model. The renormalisation 
group calculation is carried out in 0 2 ,  and the analytic calculation is performed in 
03. The paper is concluded in 04 with a discussion of the results and suggestions for 
further calculations. 

We now proceed to introduce, in turn, basic aspects of the model, the equations 
of motion and their linearisation, the response function and the dynamic scaling 
hypothesis. 

The system studied is the bond-diluted isotropic Heisenberg chain, in which the 
exchange coupling J between any pair of nearest-neighbour spins is present with 
probability p, and absent with probability 1 - p ,  where p is the bond concentration 
(see e.g. Stinchcombe 1983b). The Hamiltonian is 

where hl is an arbitrary site-dependent reduced field, and the spins Sl are taken to be 
classical spins normalised to unity. The random exchange JI has probability distribution 

P u l l =  ( 1 - p P ( J l ) + p s ( J l - J ) ,  J>O.  (1.2) 
Diluting a one-dimensional system always breaks it up into finite segments and 

therefore the threshold p c  for percolation is unity, corresponding to the pure system. 
For the analytic method (6  3) we shall need the probability P ( n )  that a given site of 
the bond-diluted chain lies in an n -bond segment. This is easily found to be 

(1.3) 

q = 1 - p .  (1.4) 
At zero temperature and field the spins in every segment are completely aligned, with 
the spin directions of different segments uncorrelated. The correlation between a pair 
of spins separated by r bonds is then the probability that a given pair of such spins 
lies within the same segment. This yields a correlation function decaying exponentially 
with r. The reduced correlation length (in units of the lattice spacing) is given by 

6, = jln P I - ' .  (1.5) 

We turn now to the dynamics, the main concern of this paper. The Hamiltonian 

SI = S / x ( h , + J , - 1 S I . . I + J I S , + ~ ) .  (1.6) 

P ( n )  = (n  + 1)q2pfl  
where 

This result is also a by-product of the RSRG treatment given in 9: 2 .  

(1.1) leads to the following equation of motion for the spin system: 
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In the following, the field hi is taken as time dependent and transverse to a fixed axis 

(1.7) 

z :  

h , ( t )  = (hj" ' ( t ) ,  h j Y ' ( t ) ,  0) .  

We consider the effect of this transverse field on a (random) chain whose spins are all 
initially aligned along the z axis. Provided that h i ( t )  satisfies certain conditions to be 
discussed below, the deviation of Si from the z axis can be made arbitrarily small at 
all times, and an approximation in which only terms linear in this deviation are retained 
is appropriate. The resulting equation of motion is 

-is;  +Jr(S;  - S ; + 1 ) + J , - , ( S t  - S : - , ) = h ; ( t )  (1.8) 

where S' and h' denote the usual combinations 

9 (1.9) s+= S'"'+iS'Y) h' = + ih ( Y )  

Taking the time Fourier transform of (1.8) leads to an equation for the Fourier 
transformed spins St("). These are related to the Fourier transformed field by the 
Green function G o , ( w )  defined as follows: 

(1.10) 

With this definition, Gir,(w) satisfies the inhomogeneous equation 

(w -J i  - J ~ - i ) G r , ( ~ )  +JrGi+i / , ( U )  +J,-iGi-i [ ' ( U )  = SIP  (1.11) 

and the imaginary part of the averaged Green function gives the transverse linear 
response function (generalised susceptibility) for the system: 

,y'T)(k,w,p)= -1mlim G ( k , o  + is ,p) .  (1.12) 
E ' O  

G (k, w ,  p )  is here the configuration-averaged Fourier transformed Green function 

G(k, 0, P )  = e - i k m ( G i + m ( w ) ) c .  
m 

( . . . ) c  denotes the average over all possible configurations of bonds 
r. 

(1.13) 

(1.14) 

and in (1.12), (1.13), k is a reduced wavevector (measured in units of the inverse 
lattice spacing). 

In the paper we investigate the dynamic response ,yiT)(k, w ,  p )  in the region in 
which it becomes critical. For the present one-dimensional isotropic Heisenberg 
system with ferromagnetic interactions, this criticality is at low dilution q (which makes 
6,  large) and small frequency w and wavevector k. Dynamic scaling arguments 
(Halperin and Hohenberg 1969) then suggest the following form for the response 
function : 

(1.15) x (TI (k, 0, p )  = k- '2-" 'T'+L)F(k~pr w l k ' ) .  
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If the response (1.15) is characterised by some typical frequency w (e.g. the centre 
of gravity of one or of a series of peaks in x ( ~ ) ,  or as defined in Halperin and Hohenberg 
(1969)), from (1.15) this characteristic frequency will have the homogeneous scaling 
form 

o = k ' f (k6,) .  (1.16) 

Equations (1.15), (1.16) are expected to hold at criticality where k, w ,  1/5, all vanish, 
but with ratios k t , ,  w / k L  arbitrary. 

As indicated earlier, the following sections justify the forms (1.15), (1.16) and 
yield expressions for the exponents v ' ~ ) ,  z and the scaling function F(a,  6 )  in (1.15) 
and in particular its asymptotic forms and those of the scaling function f ( a )  in (1.16). 

The present section is concluded with a brief discussion of the validity of the linear 
response theory. We note first of all that if a constant field h is applied perpendicular 
to the spin direction of a particular segment, the spins will precess around the field 
so that their deviation from their initial direction is no longer small and the linear 
response theory breaks down. If instead a perpendicular field of amplitude h and 
frequency w is applied, and w is much larger than h, the spin deviation can'be shown 
to be of order h / w  so for finite frequency linear response will be valid for h made 
arbitrarily small. At criticality, then, h is required to vanishand the ratio h / o  needs 
to be arbitrarily small, for the response of the system to be linear in the perturbing 
field. Finally we remark that the transverse linear response for our original system 
in which a transverse field of form (1.7) is applied, but where'the segment magnetisations 
are randomly oriented, is easily shown to be 

(1.17) 

(by averaging the components of the generalised susceptibility tensor). 

frequency by the RsRG method. 
The next section gives the treatment of the dynamic response and characteristic 

2. RSRG length scaling approach to dynamics of dilute chain 

The basic idea of the RSRG approach (Niemeyer and Van Leeuwen 1976) is to exploit 
the change of parameters generated by a dilatation of the original lattice. When this 
dilatation is a scaling of lengths by an integer factor 6 ,  it can be achieved by removing 
('decimating') spins on a sublattice. In the following we decimate every other spin of 
the chain, to achieve a length scale change by factor b = 2. 

The method just introduced is well known in static thermodynamic (Kadanoff and 
Houghton 1975, Barber 1975) or disorder (Young and Stinchcombe 1975, 1976a, b) 
problems, where the scale change is carried out subject to the preservation of the 
Boltzmann factor (for thermodynamic problems) or the basic geometric probabilities 
(for disorder problems) for the variables that remain. In the case of dynamic problems 
the decimation method is applied to the equations of motion, preserving the dynamic 
relationships between the remaining variables. These variables are the St of equation 
(1.8), or, equivalently, the Green functions GI,, of equation (1.11). 

The transformation of the Green function equation (1.1 l ) ,  for the disordered 
chain, is achieved by using similar equations for the Green functions Gl*l.I,  to eliminate 
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them from equation ( l . l l ) ,  thus arriving at 

J i  J i - i  
= S I ( ' +  - s l + l l ' +  - 61 - 1  L' 

Di+l Di-i 

where Dl = JI +JI- l  - W .  This equation can be regarded as the equation analogous to 
(1.1 1) for a system of twice the lattice spacing. 

To make the correspondence between the two equations explicit we rewrite them 
in terms of the reduced variables defined by 

The original equation (1.1 1) then takes the form 

(1-n;I-n;:llgfI +n;1gl+ll.+n;2,gl-l I =sir. (2.4) 

In this equation the coefficients of the g's on the left-hand side add up to unity. 
Introducing the reduced variables into (2.1), and dividing by a factor CI to make the 
coefficients on the left-hand side again add to unity, the equation for the scaled system 
becomes 

1 [(n;?d;,'l + n;-2,d;-11 -dl)C;l]gll + (n;ln;+lld,:lc, )g I+21  + (n;-12n;-'1c;1d;-11 )gl-zr 

= C;' (611 + Ct;1d;:16i+1 if+fl;?1d;-'16i-I 1 0 )  (2 .5 )  

where d,  = 0;' + n7-'1- 1. 
The variables in this equation can now be interpreted as the values to which those 

in (2.4) (for the original system) transform when the system is dilated by the scale 
factor b = 2. 

For simplicity we first consider just the rescaled values of the variable n~. These 
will allow us to obtain the scaling of the characteristic frequency, and hence the scaling 
form (1.16) and the dynamic exponent z .  The transformations obtained by also 
considering the inhomogeneous terms (right-hand sides) in (2.4), (2.5) will be required 
later to obtain the full dynamic scaling form for the response function. 

In (2.51, the coefficient of gl+21' is the rescaled value of the coefficient of g l + l f  in 
(2.4). Thus under the length scaling by b = 2, 

01 + 0; = nifii+ldl+lC/ =4(n1-2, ni-1, at, n,+~) (2.6) 

(and a similar equation holds for ni-1). 
Because the bond strengths Jl are independent random variables distributed accord- 

ing to the binary distribution (l.?), the variables are also independent binary 
random variables. (2.6) gives the resulting scaled random variables 0; for a general 
configuration of the random chain. The distribution of the scaled variables n; is not 
binary, nor are they independent. However, we may group the outcomes for n; into 
two qualitatively different types, those with (i) finite values, (ii) infinite values. The 
latter are the analogue of the possibility Jf  = 0 (probability (1 - p ) )  in (1,2), and their 
total probability is (1 - p 2 ) .  Since this corresponds to the scaled value of the coefficient 
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(1 - p )  in the first term in (1.2) we have 

p + p ‘ = p .  2 

(2.7) is the usual ‘percolation’ scaling for the bond concentration of a dilute chain, 
obtained as usual (Young and Stinchcombe 1975, 1976a) from the probability of a 
connecting bond (non-zero exchange) in the scaled system. The finite outcomes for 
Q i  have values and probabilities determined by the general random scaling relation 
(2.6) and the distribution (1.2) of the unscaled variables. These finite outcomes for 

nf = (1 -p)2(3n-n’ ,  + (1 - p ) p [ ( 8  - 9 n + 2 n 2 ) / c l  - n ) l + p 2 ( 4 R - n Z ) .  (2.8) 

Equation (2.8 j gives the transformed value of the reduced characteristic frequency 
variable =oJ/J.  This transformation is approximate because it neglects the evolution 
of the distribution from binary form, and also the appearance of correlations. Such 
complications have been discussed in the scaling treatment of static disorder problems 
(Stinchcombe and Watson 1976) and it is known that scaling back to a binary form 
without correlations is sufficient to maintain the essential features of most dilute 
systems. Equation (2.8) becomes exact in  the pure limit p = 1. 

The decimation process leading to (2.6), (2.7), (2.8) preserves the probability that 
the nearest neighbours of the new lattice are joined by a non-zero bond (hence (2.7)) 
and also the phase relationship of the remaining spin variables. Hence the absolute 
percolation correlation length and the absolute wavelength of any periodic excitation 
on the (averaged) lattice are preserved,, while the reduced correlation length and 
reduced wavelength (the corresponding absolute length divided by the lattice spacing) 
are changed by a factor of a half, because of the doubling of the lattice spacing. 
Denoting the reduced correlation lengths and reduced wavevectors of the original 
and scaled lattice by E,, EL, and k ,  k ’  (cf (1.5), (1.13)) we thus have 

have total weight p ’ ,  as given by (2.7), and centre of gravity 

(2.9) 

(2.10) 

Since 6; has to be the same function of p’ that 6, is of p, (2.7) and (2.9) together 
imply the result (1.5) for the correlation length, already derived in 0 1 from cluster 
statistics. The extraction of such functional relationships from scaling equations is 
only possible if the scaling equations are very simple. More complicated transforma- 
tions have to be simplified, e.g. by linearisation around fixed points. 

In dilute systems, the scale invariance caused by the divergence of Ep at the 
percolation threshold implies the existence of an unstable (percolation) fixed point. 
For the one-dimensional case, this is the fixed point 

p * =  1 (2.11) 

of (2.71, which is of course also the pure limit. The fixed point of the dynamic relation 
(2.8) at which the scale invariance associated with (2.1 1) and with k* = 0 (equation 
(2.10)) occurs is 

n* = 0. (2.12) 

The neighbourhood of the combined fixed point (2.1 1 j, (2.12) is obviously the dynamic 
critical regime specified above equation (1.15). In this regime (2.7), (2.8) take the 
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linearised forms 

(2.13) 

(2.14) 

where q is the dilution variable defined in (1.4) (the difference of p from its fixed 
point value), q' is its transformed value, and in (2.13), (2.14) only the terms linear in 
q and R have been retained. 

From (2.9), (2.10), (2.13), (2.14) the following variables all transform by the length 
scale factor 2: 

where 

v p  = In 2/ln A p  = 1,  (2.15) 

z = In An/ln 2 = 2. (2.16) 

This implies the static relationship 

5, - (2.17) 

(to which (1 .5)  reduces in the critical regime q 1 - p  a l), as well as the following 
homogeneous form for the characteristic frequency w = 0.l of the dynamics in the 
critical regime k + 0, 6, -P 00: 

(2.18) 

This is the dynamic scaling form (1.16). From (2.16), the dynamic exponent is z = 2. 
The renormalisation group method also yields the more general scaling result 

(1.1 S), for the response function, by extending the procedure to include also the 
transformation of the Green function g f f , .  This transformation is obtained, together 
with the transformation (2.6) of the random reduced variable a,, by interpreting the 
full equation (2.5) as a scaled form of (2.4). From the outset we now consider only 
the dynamic critical regime. There, wavelengths are long and the applied field will 
differ little from site 1 to site 1 f 1.  Or, in other words, the right-hand side of (2.5) is 
asymptotically equivalent to 

(2.19) 

The reduction implied by the simple right-hand side of (2.19) is easily obtained by 
inserting the detailed forms for dl*1, C I  into the left-hand side. 

With the form (2.19) for the right-hand side of (2.5), the comparison with (2.4) 
thus yields 

w = k 'f( k t , ) .  

c ; ' ( 1 + 0; ' d  + n;-"d ;-l1 )Sf[' = sa, * 

g f + l f ' - + g ; + l f ~  =g1+21,, (2.20) 

etc, as well as the transformation (2.6). Thus all the results previously obtained apply, 
but in addition we see that the size of the reduced Green function gi,, is unchanged 
under scaling. Thus averaging, Fourier transforming, and using (1.12) and (2.3), we 
obtain 

(2.21) 

where k ' ,  a', q' are related to k ,  R, q by (2.10) and the linearised transformations 
(2.13), (2.14), which like (2.21) apply in the dynamic scaling regime k + O ,  q -0,  

O'x(T)(k' ,  a', 4') = Rx'T'(k,  0, q ) ,  
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The combined equations (2.21), (2.10), (2.13), (2.14) imply that f l ~ ( ~ ) ( k ,  fl, q )  is 
a homogeneous function of degree zero in the variables k, q " ~ ,  a''*. Thus (using also 
the values of vP, z, given previously in (2.15), (2.16)) 

(2.22) X ( T ) ( k ,  0, q )  = k - * F ( k / q ,  w / k 2 )  

and the result (1.15) follows with 

p) = 2, z = 2. (2.23) 

Asymptotic forms of the scaling functionsf, F in the dynamic scaling results (2.18), 
(2.22) can be deduced without further detailed calculation by considering restrictions 
on the limits as their arguments tend to zero or infinity. For example, in (2.18) f(a) 
must go to a constant as a -* 00, and to infinity like l / a  * as a -* 0, because unlike the 
cases considered by Halperin and Hohenberg (1 969) the characteristic frequency 
should go to a 6,-independent limit as 5, + o;, at fixed k, and to a k- independent limit 
as k + 0 at fixed .fp. These limiting behaviours correspond respectively to pure spin 
wave dynamics and to the dynamics of the largest spin waves excitable on typical 
finite clusters. 

More detailed results for the form of the dynamic scaling function F for the 
response, and hence for f, can in principle be obtained from the RSRG method by 
applying the renormalisation group transformations many times, each time picking 
up the Green function contribution using (2.20), with the transformed variables given 
by (2.6), and using the scaled distribution ((1.2) with (2.7)) to evaluate the average. 
This procedure is analogous to that used for obtaining average free energies of random 
magnets (Young and Stinchcombe 1976b, Jayaprakash et a1 1978). It is, however, 
much simpler in the present (one-dimensional) case to use the method, given in § 3, 
where the average response is obtained by adding together, with appropriate weights, 
the contributions from individual finite segments of the chain. 

3. Analytical treatment 

In this section we write down the equation of motion for the Green function of an 
n-bond segment. Then a continuum approach appropriate to criticality is used to 
establish the dynamic scaling form (1.15) for x ( ~ ) ,  and the values of the exponents 
q(T) and z. Finally an explicit calculation is performed to obtain the scaling function 
F(a, b) .  

Using (1-11), the Green function G$!)(u) for an n-bond Heisenberg chain segment 
satisfies the following equations of motion: when 1 is an interior site 

(3.1) ~Gl; l ' (w)  +J[GI?\ I *  ( U )  + Gj;: V ( U )  -2Gj; l ' (~  )] = Sn,, l s l s n - 1 ,  

or an end site 

The site labels on the chain segment run from 0 to n and G!,'!)(u) is zero if I or I' is 
outside the range 0 to n. The configuration-averaged Green function for the bond- 
diluted chain can easily be expressed in terms of the finite chain Green functions. 
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The result is 

(3.3) 
n=lml l = O  

We note that the configuration-averaged Green function depends only on lml and is 
thus translationally invariant, as assumed implicitly in some discussions of 5 2. Sub- 
stituting (3.3) into (1.13) and rearranging yields the result 

m n n - m  

G ( k , w , p ) =  1 q'(1-q)" 1 2coskm 1 G ! 7 i m ( w ) .  (3.4) 
n = O  m = O  l = O  

The difference equations (3.1) can be solved subject to the boundary conditions 
(3.2) and an explicit expression for G i ; ' ( w )  then follows. On substituting this into 
(3.4), the sums over 1 and m can be evaluated leaving exact expressions for G ( k ,  0, p )  
and x ( ~ )  in the form of sums over n ,  which cannot however be evaluated in closed 
form. Instead of following through this procedure we write down continuum forms 
of equations (3.1)-(3.4) appropriate at criticality. Dynamic scaling forms for G and 
,y(T) then follow naturally without further explicit calculation. Furthermore, we shall 
see that the continuum approach leads to a closed form expression for the scaling 
function F ( a ,  b ) .  

We begin by defining a new frequency variable v and scaled lengths x ,  y and L 
as follows: 

v 2  = R = w/J ,  Y = V C P 9  x = m/5p, L 3 n/[,. (3.5) 

i, = U(,, k" = k t p .  (3.6) 

We shall also require the scaled variables v' and k' which are defined as 

At criticality the variables 1/ tp ,  v and k all tend to zero. Then the spacing between 
adjacent values of y becomes infinitesimal 

AY = 1 / 5 p +  dY (3.7) 

115, - 4. (3.8) 

Because of (3.7), the difference equations (3.1) and (3.2) go over to the following 
differential equations: 

and, from ( l S ) ,  (1.4), 

O<y<L,  (3.9) 
a' 

a y  
C26(L)(y,  yl; ;)+ ~ d ( ~ ) ( y ,  y ' ;  v ' ) = J - ' S ( y  -y'), 

a$L' a$L' 

- (0 ,  y'; ;) = - (L, y ' ;  ;) = 0.  
a y  a y  

(3.10) 

The scaled Green function 6(L)( y, y ' ;  v') is given by 

6(L)( y ,  y ' ;  i,) = [p-lGj:)(w). (3.11) 

Taking the continuum limit in (3.4), using (3.7) and corresponding equations for x 
and L,  and using also (3.8) we obtain 

X L L-x 

~ ( k , o , p ) = t i [ ~  dLe-L Jo dx 2cosk ;  Jo d y 6 ' L ' ( y , y + x ; J ) = k - 2 g ( k ' , , 0  (3.12) 
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where 
2 3 =utp, (3.13) 

m L L - x  

g(L,G)=L210 dLe-L/o  dx 2c0sk j10  d y d ‘ L ’ ( y , y + x ;  v’). (3.14) 

Thus G ( k ,  w , p )  and hence x ( ~ ’  obey the dynamic scaling form (1.15) at criticality, 
with the following exponents: 

z = 2 ,  $T’ = 2. (3.15) 

The scaling function F ( a ,  b )  in (1.15) is given by 

~ ( a ,  b )  = -!im Im g(a, ba2+iE).  (3.16) 

The present section is concluded with the evaluation of a closed form expression 
for F ( a , b ) ,  and its interpretation. The solution of (3.9) subject to the boundary 
conditions (3.10) is straightforward and yields the result 

E - 0  

(3.17) 

Substituting (3.17) into (3.14) and evaluating the integrals over y and x leads to the 
following expression for g(L, 3 ) :  

(3.18) 

The zero-frequency pole in (3.18) present for all k‘ is due to the breakdown of linear 
response at zero frequency for all values of the wavevector k for a diluted system 
(individual finite segments see a net static field). Performing the operation on the 
right-hand side of (3.16) removes the pathologies in the integral over L in (3.18) and 
yields the following closed form result for the scaling function F ( a ,  b 1: 

- __ 
(3.19) 7~ coth[(7~/2u)JJ/b][ l  + c o s ( ~ T < J / ~ ) ]  

a2b(  b / J  - l)’[cosh[( r / a ) t  J /  b] + COS(  T J J /  b ) ]  
F ( a ,  b )  = /- ,- 

where a = k t , ,  b = ~ k - ~ .  The result (3.19) is a smooth function (not a series of 
8- function peaks) because the critical dynamic response comes from the very long 
segments (typically of length -tp) for which the smoothing implicit in  the continuum 
limit is appropriate. 

We can investigate the asymptotic forms of F(a ,  b )  in the hydrodynamic (kt,+ 0) 
and critical (ktp+m) limits. These are easily obtained from (3.19) and are as follows 

lim F ( a ,  b )  = d ( b - J ) .  
(I’X 

(3.20) 

(3.21) 

The response function (3.20) for the hydrodynamic limit (kt, + 0) vanishes (because 
of the exponential) unless b varies in such a way as to keep ba2 of order J. In other 
words, the characteristic frequency in the hydrodynamic regime is 

w - J/& (3.22) 
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In the critical limit ktp+m the response is, from (3.21), the spin wave peak at the 
characteristic frequency 

w - J!'. (3.23) 

(3.22) and (3.23) are the same asymptotic behaviours obtained for the characteristic 
frequency by the crossover scaling arguments at the end of 0 2, and correspond 
respectively to the following statements: f ( a )  goes to J / a 2  for a + 0 and to the constant 
value J for a +CO. The constant value, J,  is the pure spin wave stiffness (Harris and 
Kirkpatrick 1977, Korenblit and Shender 1978, Ziman 1979). 

4. Discusssion 

Dynamic scaling forms for the response function have been obtained both by recursive 
rescaling (RSRG) techniques and by an analytic method making explicit use of cluster 
statistics. These two approaches yield the same scaling form (1.15) and the same 
values of the dynamic and static exponents z ,  (compare (2.23) and (3.15)). 
Dynamic scaling forms for the characteristic frequency are given directly by the RSRG 
method or, in general, via the scaling form for the response function. The asymptotic 
behaviours given by the two methods are again in agreement and have simple physical 
interpretations. A detailed expression for the principal scaling function F ( a ,  b )  (in 
(1.15)) has been obtained by the analytic method, and may be useful for comparison 
with experiment. F ( a ,  b )  is also in principle available from the RSRG technique: both 
methods (RSRG and analytic) developed here seem able to give complete treatments 
of the problem, though some results follow more easily from one than from the other. 
The complementary point of view (length scaling aspects of the random system, 
dynamics and statistics of finite clusters) that they provide seems valuable. 

The methods have only been applied to a very simple problem: the transverse 
dynamics of the bond-diluted Heisenberg ferromagnet at zero temperature. Though 
its behaviour is much richer than might at first be expected, many generalisations are 
obviously desirable. For experimental comparisons, site dilution rather than bond 
dilution is of more interest. This generalisation modifies the discussion of the response 
function since the site dilution affects the inhomogeneous terms, as well as the exchange 
couplings, in the Green function equations. This problem, along with others now 
mentioned, is left for future discussion. 

Another development desirable for contact with experiment is the generalisation 
to the antiferromagnet, since localised antiferromagnets are far commoner than 
ferromagnets. This generalisation is again in principle possible: a two-sublattice 
description, leading to slightly different continuum equations from those for the 
ferromagnetic case, is involved in the analytic method; the rescaling treatment is most 
easily accomplished by using an initial b = 2 decimation to transform the system to a 
ferromagnet, and thereafter proceeding as in this paper. We expect for the dilute 
antiferromagnet Heisenberg chain qualitatively similar behaviour to that found above 
(dynamic scaling forms for response function and characteristic frequency, the latter 
crossing over between hydrodynamic and propagating behaviour as kr ,  ranges from 
0 to CO). However, details such as the scaling function for the response will certainly 
be different, and so will be the dynamic exponent t since, while Heisenberg antifer- 
romagnets and ferromagnets are in the same static universality class, their critical 
dynamics differs because they do not share the same conserved quantities (Hohenberg 
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and Halperin 1977). Indeed, it is obvious from the discussion in this paper that for 
the bond-diluted chain in its critical region ( k  + 0, &,,+CO) the dynamic exponent is 
the same as for the pure case, so for the bond-diluted antiferromagnetic chain we expect 
z = 1 in its critical regime. A proper treatment of this case is nevertheless very 
desirable, so that detailed comparison can be made with the inelastic neutron scattering 
results of Boucher et a1 (1978) and Endoh et a1 (1979) on the diluted quasi-one- 
dimensional Heisenberg antiferromagnet (CD3)4N(Mn,Cul-,)C13. These are the only 
experiments so far known on the critical dynamics of dilute Heisenberg chains. 

Most important is the generalisation to higher dimensions. This allows the possibil- 
ity of greater contact with experiment, and introduces the following new features: the 
percolation threshold is at p c <  1, and while for p < p c  only the finite cluster response 
occurs (as in one dimension), for p > p c  both finite and infinite cluster response appears; 
also, the infinite cluster response is different from the pure response, for p < 1, and 
cluster shape now matters. The crossover between different dynamic behaviours is 
much richer than in the one-dimensional case we have treated. While some steps of 
the applications used here are obviously limited to one dimension, some of the more 
central ideas do generalise. The application of the RSRG rescaling method to the 
problem of critical dynamics in the neighbourhood of the percolation threshold in 
higher-dimensional systems has already been briefly described elsewhere (Harris and 
Stinchcombe 1983). 

A further important feature ignored in the present analysis but briefly discussed 
elsewhere (Stinchcombe 1983b) for the dilute Heisenberg chain is the nature of the 
recursive scaling (e.g. equation (2.8)) of dynamic quantities in the rescaling approach. 
Such nonlinear recursion relations include the possibility of chaotic as well as periodic 
orbit behaviour, related respectively (in the scaling of the chain) to pure and finite 
cluster dynamics. It was not necessary to discuss this feature in the present paper 
because only the dynamic scaling regime was considered in detail, where linearised 
recursion relations apply. 
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